Contactless magnetic heating may sound scary, but it is part of your daily life experience. Every time you heat-up your morning coffee mocha with an induction cooker, you are using magnetic fields and magnetic materials. But can this kind of heating also be used to solve high-tech problems? This is the question that scientists are trying to answer in the H2020-FETOPEN project HOTZYMES.

© Lunghammer - TU Graz

Whether activating or silencing genes, breaking down defective cells or building new tissue, our body is constantly working to repair itself, even in cases of illness. To fight a disease, our body sends out signals, often long before we ourselves notice the disease. Such signals are, for example, DNA molecules that are released from the body’s own cells, circulate in the blood and are most likely recognised by other cells as a message to stimulate a defence reaction. The identification of these messengers leads to an early detection of sepsis.

FASTCURE activities

Coronavirus SARS-CoV-2 has turned the whole world upside down. After weeks of curfew to relieve the national health care systems, the economic impact becomes more and more perceptible: We are facing a substantial crisis. The only way out of this misery is finding a) an effective drug for the treatment of COVID-19 or b) a safe vaccine, which prevents us from a Coronavirus infection.

cold inducible promoters

It is still winter outside, and some may wish warmer temperatures to come soon. While humans sometimes need warmth to get going, cold-inducible promoters from Chinese Hamster Ovary (CHO) cells turned out to be interesting tools for the production of biopharmaceuticals at low temperatures.

arugula as an example for explored salad plants

Antibiotic-resistant bacteria are not only restricted to clinical environments, nor do they always pose an immediate danger for humans. Various environmental niches are occupied by complex microbial communities that also include members that can carry one or different antibiotic resistances. The plant microbiome often harbors highly competitive microorganisms that can shield of pathogens and contribute to the host’s health. In their latest study researchers from acib-partner TU Graz have focused on antibiotic resistances in a common salad plant and found that the indigenous enterobacterial community contributes to the highly interesting profile.

drug development: hamster and book

Did you know that nowadays bacteria and mammalian cells, especially hamster cells, produce a wide range of drugs? And who tells them to do so? The answer is the four-letter code of DNA. Biotechnologists spend a lot of time to explore natural DNA sequences of different organisms for production. The Chinese Hamster is a mammalian system and suits well for cell factories because of its similarity to human cells. However, for a long time the knowledge about the hamster DNA sequence had many gaps that needed to be investigated.

Symbolic image of drugs

Co-author: Martin Walpot

In the development of drugs and pharmaceutical compounds, expensive tests are necessary, to know, which metabolic by-products and side-effects could emerge and to ensure that drugs are working effectively and in a safe manner. Human-like CYP450 enzymes, which mimic the same activities happening in the human body, are new, excellent biocatalytic tools to screen side effects outside the human body. They also enable the timely production of reasonable amounts of active pharmaceutical ingredients. Used as biocatalysts in industrial applications, new CYP450 enzymes, developed in the EU-project ROBOX, have the potential to speed up drug development, enhance pharmaceutical safety and to innovate chemical markets such as flavour-, fragrance or food industries.

targeting cancer - pink ribbon

The complex tumour structure makes the treatment of breast cancer a medical challenge. A promising, novel selenium-based breast cancer nanoparticle therapy, which is topic of the EU-project Neosetac, could change that: It has proved to boost the active agent delivery and assure it’s active only in the target tissue while also bringing the suggestion of reduced side effects. The project findings are expected to increase the efficiency of future chemotherapies and prevent recurrence of the cancer after complete remission.


Have you ever wondered, why it often takes many years until a new drug is available at your local pharmacy? One of the reasons is that the pharmaceutical industry wants to make sure that the drug is not only effective but also doesn’t produce toxic breakdown products that lead to undesireable side effects. Therefore, many time-consuming and not seldomly expensive tests are required to know precisely, which possible metabolic by-products could emerge. In a next step, the industry is producing such derivates to test them thoroughly for their side-effects, ensuring one goal: the patients health and wellbeing.