Have you ever wondered, why it often takes many years until a new drug is available at your local pharmacy? One of the reasons is that the pharmaceutical industry wants to make sure that the drug is not only effective but also doesn’t produce toxic breakdown products that lead to undesireable side effects. Therefore, many time-consuming and not seldomly expensive tests are required to know precisely, which possible metabolic by-products could emerge. In a next step, the industry is producing such derivates to test them thoroughly for their side-effects, ensuring one goal: the patients health and wellbeing. 

red blood cells - Biosensors for blood grouping

Biosensors may soon facilitate the analysis of a patient’s entire red blood cell antigen repertoire. In the form of diagnostic test strips, they could make the analysis swift and location-independent. This could have enormous potential not only in medical diagnosis, but also for environmental analysis if extended to other analytes.

Microorganisms play a crucial role for the health and well-being of higher organisms. Host-specific microbial communities of varying complexity form the so-called microbiota. It can consist of several thousand microbial species and includes bacteria, archaea and fungi. These microorganisms exchange a plethora of metabolites with their hosts and can modulate their functioning. Such interactions equally affect humans, animals and plants. This provides us with novel strategies to counteract various diseases and increase the resistance of higher organisms towards abiotic and biotic stresses by modulating the microbiota.

wound healing assay

The body of a human adult consists of 1014 or 100 trillion of cells, which have specific tasks to fulfil. As a reaction to biological signals or environmental cues, cells can start to move. Many questions about cell migration still remain unclear. The acib researchers Christian Jungreuthmayer and Jürgen Zanghellini were involved in developing a micro-device, which mechanically induces defined injuries to analyse microfluidic migration and wound healing.


Enzymes are the tiny helpers of industrial biotechnology. Despite their microscopic size, they need to be tough and diligent because we want them to catalyze a broad range of reactions, ideally with the speed of light for ever after. In reality, however, many enzymes are like sensitive creatures, who need most careful attention and special treats to get their nicest behavior. Otherwise they might fade away like a tender flower in the blinking sun… and send the biotechnologists into terrible trouble. One strategy to find frugal enzymes is to look at thermophilic organisms. They sometimes harbor a treasure of more stable proteins because they are used to withstand somewhat unfriendly conditions such as high temperatures.


There are a multitude of challenges associated with the production of next-generation biopharmaceuticals and vaccines. To be effective as a public health tool, vaccines for example are increasingly administered in form of a combination of more than one component and produced in large scale by means of seed viruses. These are living pathogens that multiply in cells from chicken eggs. The rule of thumb “one vaccine dose per egg” means that the number of vaccines is limited to 150 to 200 million available eggs worldwide. Formerly used alternative platforms – such as vaccine production in cell cultures (e.g. mammalian cells) – also have the disadvantage of instability. A new platform technology for the production of the most diverse proteins in an optimised process could be the answer.


What if we had a system mirroring the cross-talk between microbes and complex ‘super-organisms’ like humans or animals? Understanding the relationships between hosts and commensal bacteria might help fighting gut flora associated chronic diseases such as diabetes type II, Morbus Crohn, Colitis Ulcerosa. By that, the necessity for multifaceted medication could be cut and animal trials reduced. Establishing unique microbiome-databases, personal tests are thinkable and the creation of individual ‘avatars’ possible. Furthermore, animal-specific chips could mimic diverse livestock groups. The future not only lies, but also fits in our hand with a microbiome-on-a-chip lab device.