plastic bags

Many bio-plastic bags have no place in the garbage. They dissolve too slowly in oxygen-deficient environments like biogas plants and when incinerated they are a burden to the environment. Enzymes offer a solution to this problem, accelerating degradation and avoid emissions. In the long run, the aim is to reduce plastic mountains and replace conventional packaging by bio-based Polymers.

hatching eggs

The contamination of chicken eggs with fipronil led to a Europe-wide outcry in 2017. Although this specific case was not in compliance with current regulations, other treatments of hatching eggs with hazardous substances are still common. Contaminations of the eggshells with potentially animal-pathogenic microorganisms require fumigation with toxic chemicals for efficient breeding. Researchers evaluated an alternative decontamination method that is based on bacterial metabolites and showed that it is as efficient as conventional methods.

yellowstone

Enzymes are the tiny helpers of industrial biotechnology. Despite their microscopic size, they need to be tough and diligent because we want them to catalyze a broad range of reactions, ideally with the speed of light for ever after. In reality, however, many enzymes are like sensitive creatures, who need most careful attention and special treats to get their nicest behavior. Otherwise they might fade away like a tender flower in the blinking sun… and send the biotechnologists into terrible trouble. One strategy to find frugal enzymes is to look at thermophilic organisms. They sometimes harbor a treasure of more stable proteins because they are used to withstand somewhat unfriendly conditions such as high temperatures.

fireworks

First of all, welcome in 2018 and a happy new year full of interesting success stories of biotech! Hopefully, you had a good time with your family and friends and found some time to relax? Certainly, many of us also enjoyed a colorful fireworks display to get into the new year. But – as we all know – fireworks are causing air pollution.

plastic bottles

Plastic – the material of our time – is omnipresent. As the production is steadily increasing, its recycling lags behind. What if enzymes like esterases could make a change? While bringing about a sustainable life style will not get around reducing plastic usage, responsible resource management also necessitates the implementation of circular economy. As for that, the European Union established the Circular Economy Package. It made plastic one of the five priorities to be targeted and calls for novel and improved recycling processes. And, (bio)-chemical recycling using esterases might just be the method to boost our resource efficiency.

secretion in Pichia pastoris

Yeast cells are important workhorses for the “green” production of various chemicals and proteins. In many cases the biotechnological industry favours the secretive production of their target compounds, because of lower costs for purification and less complicated downstream processing. But the way from an intracellularly produced protein through the cellular secretion machinery to the outside of the cell is very long and hides numerous obstacles.  Researchers all over the world are looking for methods to overcome these hurdles  – so do acib researchers.

microbiome

There are a multitude of challenges associated with the production of next-generation biopharmaceuticals and vaccines. To be effective as a public health tool, vaccines for example are increasingly administered in form of a combination of more than one component and produced in large scale by means of seed viruses. These are living pathogens that multiply in cells from chicken eggs. The rule of thumb “one vaccine dose per egg” means that the number of vaccines is limited to 150 to 200 million available eggs worldwide. Formerly used alternative platforms – such as vaccine production in cell cultures (e.g. mammalian cells) – also have the disadvantage of instability. A new platform technology for the production of the most diverse proteins in an optimised process could be the answer.

Microorganisms for energy – does it work? And how could this be connected with CO2 conversion? Microorganisms particularly gained interest in carbon capture and utilization research due to the ability to convert CO2 to a broad range of possible valuable products and fuels. Application of such microorganisms has become highly attractive as several different strains of pure as well as mixed cultures of microorganisms are suitable for application in biofuel and biochemical generation.

microtiter plate

Co-author: Verena Beck

While for scaling up a production process the main goal is to keep the quality and quantity of a product stable, scaling-down is often used for troubleshooting and testing unit operations. At the microscale various process parameters such as temperatures, buffer additives or mixing conditions can be tested much faster and with lower material consumption compared to large scale. Researchers of acib investigated the most crucial parameters affecting the mixing behaviour at the microscale and how mixing of fluids in small scale can be compared to large vessels.