microbiome

There are a multitude of challenges associated with the production of next-generation biopharmaceuticals and vaccines. To be effective as a public health tool, vaccines for example are increasingly administered in form of a combination of more than one component and produced in large scale by means of seed viruses. These are living pathogens that multiply in cells from chicken eggs. The rule of thumb “one vaccine dose per egg” means that the number of vaccines is limited to 150 to 200 million available eggs worldwide. Formerly used alternative platforms – such as vaccine production in cell cultures (e.g. mammalian cells) – also have the disadvantage of instability. A new platform technology for the production of the most diverse proteins in an optimised process could be the answer.

Microbiome

What if we had a system mirroring the cross-talk between microbes and complex ‘super-organisms’ like humans or animals? Understanding the relationships between hosts and commensal bacteria might help fighting gut flora associated chronic diseases such as diabetes type II, Morbus Crohn, Colitis Ulcerosa. By that, the necessity for multifaceted medication could be cut and animal trials reduced. Establishing unique microbiome-databases, personal tests are thinkable and the creation of individual ‘avatars’ possible. Furthermore, animal-specific chips could mimic diverse livestock groups. The future not only lies, but also fits in our hand with a microbiome-on-a-chip lab device. 

In the past years the advent of microbiome research was facilitated by a tremendous decrease in DNA sequencing costs. The progression of sequencing technology and the growing demand for large datasets (beyond the size of the human genome) enabled this favorable progress, which even surpassed Moore’s Law. There are various technologies that benefited from these developments and many of them have a set position in modern laboratories.

Although we live in a world that is more developed than ever, toxins are omnipresent in our environment. During evolution, the human bodies developed ways to cope with many harmful compounds; most of them are degraded enzymatically. A project at the Austrian Centre of Industrial Biotechnology (acib) revealed new insights into life saving processes – especially into the enzymatic detoxification by a special class of enzymes called flavin containing monooxygenases (FMO).

Infections in wounds concern about 2% of the population in developed countries at least once in their lifetime. These kinds of infections can lead to serious complications such as sepsis and need to be diagnosed as fast as possible. But how to find out in a fast way, if a wound is infected?